Preparation, Characterization and Sensitive Gas Sensing of Conductive Core-sheath TiO2-PEDOT Nanocables
نویسندگان
چکیده
Conductive core-sheath TiO(2)-PEDOT nanocables were prepared using electrospun TiO(2) nanofibers as template, followed by vapor phase polymerization of EDOT. Various techniques were employed to characterize the sample. The results reveal that the TiO(2) core has an average diameter of ∼78 nm while the PEDOT sheath has a uniform thickness of ∼6 nm. The as-prepared TiO(2)-PEDOT nanocables display a fast and reversible response to gaseous NO(2) and NH(3) with a limit of detection as low as 7 ppb and 675 ppb (S/N=3), respectively. This study provides a route for the synthesis of conductive nanostructures which show excellent performance for sensing applications.
منابع مشابه
Acetone sensing properties of hierarchical WO3 core-shell microspheres in comparison with commercial nanoparticles
In this work, hierarchical WO3 core-shell microspheres were synthesized via a facile template-free precipitation method. Gas sensing properties of the synthesized powder to acetone and some other volatile organic compounds were comparatively investigated with commercial WO3 nanoparticles. The synthesized and commercial powders were characterized by X-ray diffraction, scanning electron microscop...
متن کاملAcetone sensing properties of hierarchical WO3 core-shell microspheres in comparison with commercial nanoparticles
In this work, hierarchical WO3 core-shell microspheres were synthesized via a facile template-free precipitation method. Gas sensing properties of the synthesized powder to acetone and some other volatile organic compounds were comparatively investigated with commercial WO3 nanoparticles. The synthesized and commercial powders were characterized by X-ray diffraction, scanning electron microscop...
متن کاملNovel C/Cu sheath/core nanostructures synthesized via low-temperature MOCVD.
C/Cu sheath/core nanocable arrays were mass-produced on various substructures, such as Si, SiO(2), Cu or glass, by using a one-step low-temperature metal-organic chemical vapor deposition. The novel nanostructures consist of a faceted Cu nanowire core with six side surfaces and four top surfaces, and a sheath of carbon. The as-synthesized nanocables are demonstrated excellent oxidization resist...
متن کاملW-doped nanoporous TiO2 for high performances sensing material toward acetone gas
W-doped TiO2 with nanoporous structure was synthesized by a one-step low temperature hydrothermal method using TiOSO4 and (NH4)6H2W12O40•xH2O as titanium and tungsten sources. Structure, morphology, specific surface area and chemical state of samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). W-doped nanoporo...
متن کاملHeating-Rate-Triggered Carbon-Nanotube-based 3-Dimensional Conducting Networks for a Highly Sensitive Noncontact Sensing Device
UNLABELLED Recently, flexible and transparent conductive films (TCFs) are drawing more attention for their central role in future applications of flexible electronics. Here, we report the controllable fabrication of TCFs for moisture-sensing applications based on heating-rate-triggered, 3-dimensional porous conducting networks through drop casting lithography of single-walled carbon nanotube (S...
متن کامل